看了对排列组合的介绍,只有定义与公式,完全是程序化的说明,发现自己理解的很费力。 为了辅助对排列组合定义的理解,小编用具体的例子来说明它的定义。并列出了详细的计算过程。

2、[计算公式]排列用符号A(n,m)表示,m≦n。计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)…1例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。

2、[计算公式]组合用符号C(n,m)表示,m≦n。公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。

符号说明
1、C-代表-Combination--组合数A-代表-Arrangement--排列数(在旧教材为P-permutation--排列)N-代表-元素的总个数M-代表-参与选择的元素个数!-代表-阶乘
基本公式整理
1、只要记住下面公式,就会计算排列组合:(在列式中n为下标,m为上标)排列A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!组合C(n,m)=A(n,m)/A(m,m)=A(n,m)/m!C(n,m)=C(n,n-m)=n!/m!(n,m)!例如A(4,2)=4!/2!=4x3=12C(4,2)=4!/(2!x2!)=(4x3x2)/(2x2)=6
